学神王冠 第289章

作者:一苇以渡 标签: 打脸 爽文 系统 近代现代

“高能物理学么?”海和伸弥想了想,据他了解高能物理学更多的是探讨基本粒子在围观世界中的性质,这个专业是需要做实验才能够进行后面的验证的。但是安宴坐在图书馆里做傅里叶级数,他很难说服自己安宴是真的在做事儿,而不是在玩弄数学游戏。

没错,在海和伸弥看来,从高能物理学延伸出来的弦理论, 也就是大统一理论的一种尝试性理论已经彻底沦为数学家们的游戏。

弦理论几乎是不可能被证实的, 尤其是M理论。已经达到了物理的极限状态, 这就好像是——数学家们通过数学来验证物理,这些理论的逻辑在数学上是可以成立的。但是在物理学上, 似乎有些说不通。用数学来附会物理学,怎么想都有些怪异。当然他也知道,物理学上有很多都会运用到数学上的知识没有错。

但是让物理彻底沦为数学家们的游戏, 这就有点儿说不过去了。

海和伸弥特别怀疑安宴是在摆弄自己的数学学识, 也就是——玩弄数学家的游戏——弦理论。或者是说,也可以将弦理论、超弦理论、十一维空间称为一种数字游戏。

“宴君, 你是在研究超弦理论吗?”

“不。”安宴笑着说道,“我在规范场论中将希尔伯特空间和我自己的空间做出一些东西来, 是华国京大的一位物理学教授告诉我,可以尝试一下。”

“原来如此。”海和伸弥笑了笑,原来是在做规范场论。他还以为安宴是在玩数学游戏呢,不过场论运用到傅里叶级数是一件非常稀松平常的事情。

安宴打量着海和伸弥, 不管是刚才的蹙着眉头,还是现在的展颜而笑。似乎都在预示着,这家伙似乎对于弦理论有些意见啊。不过安宴没有说什么,这位霓虹国的朋友对于弦理论有意见也和他没有什么关系吧。更何况弦理论的确是大统一理论的一种尝试。虽然大统一理论是被提出来了,但是能不能被证实,是否真的有大统一理论谁也不知道。

即便是提出大统一理论的爱因斯坦——这位二十世纪最伟大的物理学家至死都没有能够找到大统一的方法,后来人想要找到这个方法还真是不太容易的。至少,现在没有那位物理学家看上去像是可以超越爱因斯坦的样子。

近来不管是超弦理论或者是M理论在高能物理学上都是热点没有错,甚至为此出现了无数篇论文,养活了不少的物理学家。但是这东西因为达到了物理的极限,完全没有被证实的可能。

所以不管是弦理论还是超弦理论,亦或者是作为终极物理理论的M理论,都完全没有可能获得诺贝尔奖的可能性。

除非你真的能够证明——大统一理论是真的存在,并且被你解决掉了。而不是玩弄数字游戏,数字游戏的意思是——你的论文和计算公式是附和数学逻辑的,但在物理学上完全无法被证实。

这也是为什么M理论被诟病的一点。

比如华国的杨振宁先生,并不认为M理论是可以寻找到大统一理论的出路。

并且如果想要进行大统一理论,你必须证实除了已经被证明的弱电统一理论之外的其余统一理论,这几乎是不可能完成的。多少致力于大统一理论的学者,都几乎穷尽一生也无法证明该理论是否真的存在。

这才是大统一理论最坑的地方,除了上个世纪六十年代格拉肖、温柏格、萨拉姆三位科学家提出弱电统一理论,即电磁与弱相互作用力统一,这种统一理论可以分别解释弱相互作用和电磁相互作用的各种现象,并预言了几种新的粒子,他们因此荣获1979年诺贝尔物理学奖,1983年实验发现了理论中预言的粒子,进一步证明了理论的正确性。①

而时至今日,依旧有不少学者在研究其他的统一理论,然而没有任何一个人是做出成果的。

海和伸弥对于弦理论的质疑,也是学术界普遍对于弦理论的质疑的缩影罢了。即便是安宴崇拜威腾博士,但不得不说,M理论这种永远无法证实的理论是否真的能够在物理学上存在,让人想象不出来。

物理学是做出实验,让数学附和实验。而弦理论几乎是让物理实验附和数学,从根本意义上来说,大概就是玩弄数字的游戏。很难想象它今后会像什么地方发展,至少安宴是想象不出来的。,“对了。”海和伸弥在安宴正在思索的时候说道,“我能知道你是哪位教授的学生吗?我听说华国的学生是非常喜欢在实验室或者图书馆里学习的。但是你看上去有些面生啊。”

“哦,我是今天才到斯坦福大学的。”

海和伸弥一脸肃然起敬的看向安宴,这今天才到斯坦福大学就迫不及待地在图书馆进行学习。这就是华国学生吗?果然华国学生是非常厉害的,难怪华国与霓虹国已经可以相提并论,并且有超越霓虹国的趋势。

“宴君你可真是……太喜欢学习了。”

“我们到斯坦福大学不就是为了学习的吗?”安宴笑着说道,“难道你是来斯坦福大学度假的?”

“当然不是。”海和伸弥摇着头说道,“我只是没有想到宴君竟然这么爱学习,宴君你的数学好像不错。”

海和伸弥的脸涨得有些红,安宴看着有点儿奇怪。这怎么说着说着还脸红上了?

他们好像没有说什么奇怪的话题吧,这家伙究竟在脸红什么啊。就跟个苹果似的,红得还挺通透的。

“咳咳。”海和伸弥不好意思的轻咳一声,“不知道宴君在解析数论上有没有研究?”

“嗯?”安宴挑动眉头,“我对数论还是有些了解的,怎么,你有什么数论上的疑惑吗?”

“的确有一些。”说道这里的时候,海和伸弥慢慢地将自己的草稿纸推到安宴的面前说道,“就是这玩意儿。”

“我看看。”安宴看着海和伸弥这模样,觉得有些好笑,但依旧还是拿着草稿纸看了起来——

【令φ(m) 是 Euler 函数, 其中 m 是一正整数, 是一个很重要的数论函数,包含 Euler 函数的形如:

φ(a1a2……an) = k(φ(a1) + φ(a2)……+φ(an))】

安宴拿到这道题的时候,挑动眉头,“是数论函数对吧?”

“是。”海和伸弥陪笑着说道,“我还是不太清楚这道题怎么做,这是教授给我们的作业,我已经来了图书馆两天时间了,还是没有找到怎么做这道题的方法。”

“我想想看。”安宴思索了一会儿,盯着这道题,然后拿着笔在草稿纸上写了起来。

……

对于任意正整数 m, 当 m > 2 时, 有φ(m) 是偶数……

有正整数解 (x, y, z) = (58, 3, 4), (58, 4, 3)……(5, 43, 4), (5, 49, 4),(5, 43, 6), (5, 49, 6)

由于φ(xyz) = 7(φ(x) + φ(y) + φ(z)

……

当φ(y)φ(z) < 7 时.

当φ(y)φ(z) < 7 时, 有φ(y)φ(z) ≤ 6. 经计算, 有整数解 (x, y, z) = (58, 3, 4),(58, 4, 3),(29, 4, 4),(29, 4, 6),(29, 6, 4)

……

当φ(y)φ(z) > 7 时.

当φ(y)φ(z) = 8 时, 有φ(y) = 1, φ(z) = 8 或φ(y) = 2, φ(z) = 4 或φ(y) = 4,φ(z) = 2 或φ(y) = 8, φ(z) = 1.

当φ(y) = 1, φ(z) = 8 或φ(y) = 8, φ(z) = 1, 则 7(φ(y) + φ(z)) 是奇数, 因此φ(xyz) 7φ(x) 是奇数……②】

写完之后,安宴将草稿纸还给海和伸弥说道,“你看看,如果还有什么不懂的问我就行了。”说着,他又转过头琢磨着自己的东西。

海和伸弥竖起大拇指说道,“宴君你可真是厉害。”